

Flight Experiments for Living With a Star Space Environment Testbed (LWS SET) –

Relationship to Technology

Kenneth A. LaBel
Chief Technologist, LWS SET
NASA/GSFC Code 561
kenneth.a.label@nasa.gov
301-286-9936

Janet L. Barth, NASA/GSFC Dana A. Brewer, NASA/HQ

Outline

- Introduction
 - LWS SET overview
 - SET flight experiment goals
 - SET Experiment Services
- Flight Experiments
 - Experiment Selection Process
 - SET Pathfinder (SETPath) Experiments
 - NASA Research Announcement (NRA)
- Collateral programs
- Comments

Living With a Star Program:

a pure and applied science program with an engineering application

- Program Goal Perform investigations in space to understand solar variability & its effects leading to a reliable predictive capability of solar variability (i.e., space weather)
- LWS has three elements
 - Science Missions: the what's and why's of the solar variant environment
 - Ex., Solar Dynamics Observer
 - Theory and Modeling and Data Analysis: the environment models and tools developed from solarvariant data
 - A sample product might be: Improved Trapped Particle Models
 - Space Environment Testbeds (SETs): Improve the engineering approach to accommodate and/or mitigate the effects of solar variability on spacecraft design & operations
 - A sample of a predecessor: Microelectronics and Photonics Testbed (MPTB)
- Continuous program started in FY01

SET Technologies

- SET provides opportunities for flight validation experiments on technologies
 - Microelectronics
 - Photonics
 - Materials
 - Sensors
 - Environment, imaging, etc.
- These investigations focus on
 - Demonstration of environment tolerance
 - Radiation hardening approaches
 - Validation of technology ground test methods and performance prediction techniques
 - Ex., correlate space dose rates to ELDRS sensitive device performance
- Investigations must require exposure to solar-variant environment

Space Technology Research Vehicle 1-d with NASA experiments

Solar Variant Example: SOHO/LASCO C3 Coronograph

July 14, 2000

Sample LWS SET Goals:

Understand enough about the technology and the environment to minimize science data outages.

Validate cosmic ray rejection methods...

Solar storm induces transients in a Charge-Coupled Device (CCD) view video at http://radhome.gsfc.nasa.gov/radhome/papers/C3big480C.avi

Sample Solar Variant Technology Effects: Radiation Effects on Spacecraft

- Long-term effects:
 failure/degradation increases
 with mission lifetime
 - Total ionizing dose (TID)
 - Displacement damage

- Transient or single particle effects (Single event effects or SEE): random strikes by a particle
 - Soft or hard errors

- Four quadrants, each representing a different design
- Particle hits spread among multiple pixels
- Ion strikes are minimized by utilization of a non N-well, n+ recessed implant photodetector design

Active Pixel Sensor courtesy of Photobit Technologies via NASA SBIR and DTRA Sensors Hardening Program

view video at http://radhome.gsfc.nasa.gov/radhome/papers/D3_I030_2100_2199.avi

in a commercial-off-the-shelf (COTS) 120V device,

after Howard, 2002

Other Technology Effects of Interest to LWS SET - Examples

- Spacecraft charging
 - May be the single largest cause of space environment induced anomalies
 - Can damage solar arrays, electronics, etc
- Material degradation

- Brittleness, optical property degradation, thermal effectiveness,...

CEASE II instrument, www.amptek.com

SET Services Provided to Experiments

+ NASA and DTRA are collaboratively investigating infrastructure requirements for imaging sensors

NASA

Flight Experiment Selection Process:

Two methods

- NRA: a competitive action for investigations
 - Proposal process
 - Must demonstrate need to fly in solar-variant environment
 - Must have collateral ground test and/or model development program
 - No technology development efforts funded by this NRA
 - Data is non-proprietary (may be ITAR)
 - No funds exchanged with international entities

- Partnering
 - Partner may provide investigation(s) outside of the NRA process in exchange for support of the LWS SET Program
 - Funding
 - Launch opportunity
 - Infrastructure, etc...
 - Data can be proprietary or secure

SETPath Experiments Overview

- SETPath experiments are based on flight investigations originally designed for Space Technology Research Vehicle – 1d (STRV-1d) mission
 - No data returned due to spacecraft communications system failure
 - Originally selected by a peer team for STRV-1d inclusion
 - Some updates provided to original experiment to increase investigation utility
- Five experiment cards
 - COTS-1a: Linear Single Event Transients (LSETs)
 - COTS-1b: Enhanced Low Dose Rate Sensitivity (ELDRS)
 - COTS-2a: Digital Commercial-off-the-Shelf (COTS) Electronics
 - COTS-2b: Field Programmable Devices
 - COTS-3: Optocouplers

STRV-1d COTS 2a Flight Prototype

COTS-1a: Linear Single Event Transients (LSET)

Purpose

 Collect data in space to validate single event transient (SET) performance models & test protocols for linear bipolar devices

NASA Benefit

 Provide more consistent performance & lifetime; lower likelihood of LSET anomalies as observed in Cassini, MAP, & TDRSS

NASA Application

 Linear bipolar devices are common in comparators and operational amplifiers -- basic building blocks in all NASA spacecraft & instruments

History

 Designed for STRV 1-d; will be built by Aerospace Corp

A sample LSET, after Poivey, 2002

Partners

 Aerospace Corp., NASA'GSFC, NAVSEA-Crane, Vanderbilt University, JPL, DoD, Industry, RLP

Leveraging

- The NASA Electronics Parts & Packaging (NEPP) and DTRA supports development of ground radiation tests, protocols, & prediction models
 - Ground test protocol will be issued in FY 20032 (Poivey/GSFC)
 - Supports Vanderbilt model development
- Devices provided by industry (NSC, et al?)

Development Path

 Modification of existing design (Koga & Crain/Aerospace Corp)

Delivery Date: Jan 2004 **Risk of Schedule Slip**

Low; based on existing design

COTS-1b:

Linear Enhanced Low Dose Rate Sensitivity (ELDRS)

Purpose

- Collect data in space to validate ground test protocols for linear bipolar devices that exhibit ELDRS
 - ELDRS is failure at a lower cumulative total ionizing dose in space compared to traditional accelerated ground test dose rates

NASA Benefit

Provide more consistent performance
 & lifetime

NASA Application

 Linear bipolar devices are common in comparators and operational amplifiers -- basic building blocks in all NASA spacecraft & instruments

History

 Early experiment concept successfully flown on MPTB by NAVSEA-Crane (COTS-1b experiment developer)

Partners

 NAVSEA-Crane, Vanderbilt University, NASA/GSFC, JPL, DoD, Industry, RLP

Leveraging

- The NASA Electronic Parts & Packaging Program (NEPP) delivers a ground test & technology guideline in FY 2003 (Johnston/JPL)
 - Devices provided by industry (NSC, et al)
- Mil 1019.6

Development Path

Modification of existing design by NAVSEA-Crane (Turflinger, et al)

Delivery Date: Jan 2004 Risk of Schedule Slip

Low; based on flight-heritage design

COTS-2a: Digital COTS

Purpose

- Collect data in space to validate single event effect (SEE) & total ionizing dose (TID) performance models for:
 - Commercial fuzzy logic processors;
 - Static random access memories (SRAM); &
 - Field programmable gate array (FPGA) logic devices

NASA Benefit

 Reduce design margins & provide more consistent performance in space

NASA Application

- Fuzzy logic: Robotics, docking,
 & constellation management applications
- SRAMS: Solid state recorders
- FPGAs: Replace custom solutions

Partners

NASA/GSFC, CNES, ONERA, TIMA
 Development Path

 Modification to existing STRV 1-d flight card for LWS SET carrier interface (NASA/GSFC)

<u>Delivery Date:</u> November 2003 <u>Risk of Schedule Slip</u>

Low; existing hardware
 Ground data availability

 Heavy ion & proton data in hand from Orsay, France

History:

Built for STRV 1-d but not flown

COTS-2b: FPGA Technology Concept Validation

Purpose

 Collect data in space to validate single event effect (SEE) and total ionizing dose (TID) performance models & test protocols for COTS and environmenthardened FPGAs

NASA Benefit

 Provide more consistent performance in spacecraft electronics systems.

NASA Application

 Replace custom solutions in electronics system design at a fraction of the cost in virtually all NASA spacecraft; save power, weight, volume, & schedule

History

 Designed for STRV 1-d by NASA/GSFC; devices will be updated to state of the art

Partners

NASA/GSFC, DoD, Industry, (is TIMA interested?)

Leveraging

- The NASA Electronics Parts & Packaging Program supports development of ground test protocols, guidelines, & technology development
- Devices provided by DoD & industry

Development Path

Existing design (Katz - NASA/GSFC) with mission-specific modifications

Delivery Date

Jan 2004

Risk of Schedule Slip

 Low – existing design with experienced flight designer

COTS-3: Optocouplers

Purpose

- Collect data in space to validate single event effect (SEE), total ionizing dose (TID), and device displacement damage (DDD) performance models & test protocols for optocouplers
 - Portions of the models may also be applicable to high-speed fiber optic links

NASA Benefit

- Reduce design margins & increase reliability
 - Anomalies on HST, TERRA, & TOPEX/Poseidon)

NASA Application

 Used to isolate electrical signals between spacecraft sub-systems & instruments; ex., power converters

<u>History</u>

 Designed for STRV- 1d by NASA/GSFC; new optocouplers will be utilized for SETPath

Partners

- NASA GSFC, JPL, DoD, Industry <u>Leveraging</u>
- The NASA Electronic Parts & Packaging Program (NEPP) and DTRA deliver a ground test & technology guideline in FY 2003 (Reed/GSFC)
- Devices provided by industry Development Path
- Existing design; mission-specific interface modifications & newer devices (Buchner – GSFC)

Delivery Date: Jan 2004

Risk of Schedule Slip: Low; based on an existing design

Ground data availability

 Heavy ion & proton data in hand; all new ground data to be funded by NEPP

Collateral Programs

- Ground-test programs are developing protocols or that require validation. Examples include:
 - Electronics
 - NASA Electronic Parts and Packaging (NEPP) Program
 - Defense Threat Reduction Agency's (DTRA's) Radiation Hardened Microelectronics (RHM) Program
 - Air Force Space and Missile Command
 - ESA
 - CNES
 - Materials
 - Air Force Wright Patterson
- Environment-tolerant approaches require validation
 - Air Force Research Laboratories
 - DTRA
 - Industry

Final Comments

- Ground test methods require validation with in-flight data
 - Must have correlative environment monitors (CEMs) or we can't adequately reduce design margins
- No one likes to be the first to fly a new solution
 - LWS SET can provide that opportunity for new technologies that require solar-variant environment validation
- NRA results due out in near-term
 - Future NRA planning has begun
- Collaboration with others is critical
- Contact for more info
 - kenneth.a.label@nasa.gov
 - http://lws-set.gsfc.nasa.gov
 - http://nepp.nasa.gov

Europa: future challenges for radiation, temperature, and lifetime